Neurodevelopmental Profile in Children Affected by Ocular Albinism

Jessica Galli1,2, D Elisa Loi3,4, Alessandra Morandi1,2, Vera Scaglioni2, Andrea Rossi2, Anna Mollano2, Elsa Fazzi1,2

1Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
2Unit of Child Neurology and Psychiatry, ASST Special Clin. of Brescia, Brescia, Italy
3Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
4Department of Neurological and Vision Sciences, ASST Special Clin. of Brescia, Eye Clinic, Brescia, Italy

Neuropediatrics

Address for correspondence: Jessica Galli, MD, PhD, Unit of Child Neurology and Psychiatry, ASST Special Clin. of Brescia, Piazza Special Clin. 1, 25123, Brescia, Italy (email: jessica.galli@unibs.it).

5Department of Neurological and Vision Sciences, ASST Special Clin. of Brescia and University of Brescia, Eye Clinic, Brescia, Italy
6Department of Surgical and Clinical Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Padua, IRCCS Fondazione Toscino Clinica San Matteo, Pavia, Italy

Abstract

Aim The aim of this study was to detail the neurodevelopmental profile of subjects affected by ocular albinism (OA) and to collect data on GPR143 gene analysis.

Design The design of the study involves a retrospective longitudinal observational case series.

Methods We collected data on the neurodevelopmental profile of 13 children affected by OA from clinical annual assessments conducted for a period of 5 years after the first evaluation. We described visual profile, neuromotor development and neuropsychological examination, cognitive profile, communication and language skills and behavioral characteristics. The GPR143 gene analysis was performed as well.

Results Children presented a variable combination of ocular and oculomotor disorders unchanged during the follow-up, a deficit in visual acuity and in contrast sensitivity that progressively improved. Abnormalities in pattern visual evoked potential were found. No deficits were detected at neurological examination and neuromotor development except for a mild impairment in hand-eye coordination observed in five cases. A language delay was observed in five cases, two of whom had also a developmental quotient delay at 2 years evolving to a borderline/deficit cognitive level at preschool age. Difficulties in adaptive behavior and autistic-like features were found. Mutations in the GPR143 gene were identified in the two patients who presented the most severe clinical phenotype.

Conclusion Children with OA may share, in addition to a variable combination of ocular signs and symptoms, a neurodevelopmental impairment regarding mostly the cognitive, communicative, and social area, especially those with GPR143 mutation.

Acknowledgments

The authors are grateful to Anna Alessandrini, Alice Bertoletti, Nicole D’Adda, Alessandra Fassonzi, and Melissa Marrass for their valuable help in evaluating the children included in this study. We thank children affected by ocular albinism and their care providers for participating in Albinit APS as well.